Page.	No I	
-------	------	--

EC42

	 	 , -	 _		_	
USN				0.00		100
COL				. 1		

NEW SCHEME

Fourth Semester B.E. Degree Examination, July 2007 EC/TE/EE/IT/ML/BM

Power Electronics

Time: 3 hrs.1

[Max. Marks:100

Note: Answer any FIVE full questions.

- Mention and explain the different types of power electronic converter systems. Draw their output / input characteristics. (08 Marks)
 - b. What are the peripheral effects of power converter system?

(04 Marks)

- c. What is the need of a base drive control in a power transistor? Explain proportional and anti saturation control. (08 Marks)
- a. With the necessary waveforms explain the switching characteristics of a power transistor. (07 Marks)
 - Give the comparison between SCR, MOSFET and IGBT.

(06 Marks)

c. With the necessary sketches, explain the switching characteristics of an IGBT.

(07 Marks)

- 3 a. Sketch the static V-I characteristics of an SCR and then explain
 - Latching current.
 - Holding current.
 - iii) Break over voltage.

(08 Marks)

- Explain the various methods of turn-on of an SCR and mention the advantages of gate triggering. (08 Marks)
- c. The thyristor is gated with a pulse width of 40 µsec. The latching current of thyristor is 36 mA. For a load of 60 Ω and 2H, will the thyristor get turned ON? If not, how it can be overcome for the given load? Find its value. (04 Marks)
- a. What do you mean by commutation? Explain briefly the different types of commutation. (08 Marks)
 - With necessary circuit and waveforms, explain complementary commutation scheme. (08 Marks)
 - c. The resonant pulse commutation circuit has a capacitance $C = 30 \mu F$ and $L = 4 \mu H$. The initial capacitor voltage is $V_0 = 200 \text{ V}$. Determine the circuit turn OFF time for the load current $I_m = 250 \text{ A}$.
- a. What are the advantages of freewheeling diode? Explain the principle of operation of a single phase HWR feeding an RL load. Draw the necessary sketches. (08 Marks)
 - With the necessary circuit and waveforms, explain the operation of three-phase full converter. (08 Marks)
 - c. A single phase rectifier for 10 kW rating is required. Thyristor of current rating 50 A are to be used. Find the rated voltage of thyristor using a safety factor of 2, if the rectifier is
 - Full wave using centre tapped transformer.
 - ii) Full wave bridge rectifier.

Assume RL load. (04 Marks)

- 6 a. Classify the choppers and explain the different types and chopper circuits. (08 Marks)
 - Obtain an expression for the output voltage for a step-up chopper. Explain how duty cycle is controlled. (08 Marks)
 - c. A dc chopper has an input voltage of 200 V and a load of 8 Ω resistance. The voltage drop across thyristor is 2 V and the chopper frequency is 800 Hz. The duty cycle α = 0.4. Find
 - i) Average output voltage.
 - ii) Rms output voltage.
 - iii) Chopper efficiency.

(04 Marks)

- With necessary circuit and waveforms, explain the operation and fullwave a.c. voltage controller feeding an RL load. (08 Marks)
 - Explain the various methods of gating an SCR. State why short duration pulses are insufficient for an ac voltage controller feeding an RL load. (66 Marks)
 - c. A single phase half wave ac voltage controller has an input voltage of 150 V and a load resistance of 8 Ω. The firing angle of thyristor is 60° in each positive half cycle. Find
 - i) Average output voltage.
 - RMS output voltage.
 - iii) Power output.
 - iv) Power input
 - v) Average input current over one cycle

(06 Marks)

- What do you mean by Inverters? Explain the operation of single phase full bridge inverter. Draw the load current waveforms for R, RL and RLC loads. (08 Marks)
 - With necessary circuit and waveforms, explain the operation of three phase bridge inverter with 180° mode of operation. (08 Marks)
 - c. Explain how harmonics can be reduced by transformer connections. (04 Marks)
